Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38279762

RESUMEN

BACKGROUND: Involvement of gastrointestinal inflammation in Parkinson's disease (PD) pathogenesis and movement have progressively emerged. Inflammation is involved in the etiology of both PD and inflammatory bowel disease (IBD). Transformations in leucine-rich recurrent kinase 2 (LRRK2) are among the best hereditary supporters of IBD and PD. Elevated levels of LRRK2 have been reported in stimulated colonic tissue from IBD patients and peripheral invulnerable cells from irregular PD patients; thus, it is thought that LRRK2 directs inflammatory cycles. OBJECTIVE: Since its revelation, LRRK2 has been seriously linked in neurons, albeit various lines of proof affirmed that LRRK2 is profoundly communicated in invulnerable cells. Subsequently, LRRK2 might sit at a junction by which stomach inflammation and higher LRRK2 levels in IBD might be a biomarker of expanded risk for inconsistent PD or potentially may address a manageable helpful objective in incendiary sicknesses that increment the risk of PD. Here, we discuss how PD and IBD share covering aggregates, especially regarding LRRK2 and present inhibitors, which could be a helpful objective in ongoing treatments. METHOD: English data were obtained from Google Scholar, PubMed, Scopus, and Cochrane library studies published between 1990-December 2022. RESULT: Inhibitors of the LRRK2 pathway can be considered as the novel treatment approaches for IBD and PD treatment. CONCLUSION: Common mediators and pathways are involved in the pathophysiology of IBD and PD, which are majorly correlated with inflammatory situations. Such diseases could be used for further clinical investigations.

2.
Naunyn Schmiedebergs Arch Pharmacol ; 397(3): 1433-1454, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-37736835

RESUMEN

Cholestasis describes bile secretion or flow impairment, which is clinically manifested with fatigue, pruritus, and jaundice. Neutrophils play a crucial role in many diseases such as cholestasis liver diseases through mediating several oxidative and inflammatory pathways. Data have been collected from clinical, in vitro, and in vivo studies published between 2000 and December 2021 in English and obtained from the PubMed, Google Scholar, Scopus, and Cochrane libraries. Although nitric oxide plays an important role in the pathogenesis of cholestatic liver diseases, excessive levels of NO in serum and affected tissues, mainly synthesized by the inducible nitric oxide synthase (iNOS) enzyme, can exacerbate inflammation. NO induces the inflammatory and oxidative processes, which finally leads to cell damage. We found that natural products such as baicalin, curcumin, resveratrol, and lycopene, as well as chemical likes ursodeoxycholic acid, dexamethasone, rosuvastatin, melatonin, and sildenafil, are able to markedly attenuate the NO production and iNOS expression, mainly through inducing the nuclear factor κB (NF-κB), Janus kinase and signal transducer and activator of transcription (JAK/STAT), and toll like receptor-4 (TLR4) signaling pathways. This study summarizes the latest scientific data about the bile acid signaling pathway, the neutrophil chemotaxis recruitment process during cholestasis, and the role of NO in cholestasis liver diseases. Literature review directed us to propose that suppression of NO and its related pathways could be a therapeutic option for preventing or treating cholestatic liver diseases.


Asunto(s)
Colestasis , Hepatopatías , Humanos , Óxido Nítrico/metabolismo , Colestasis/metabolismo , Transducción de Señal , FN-kappa B/metabolismo , Hepatopatías/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Hígado/metabolismo
3.
Can J Physiol Pharmacol ; 102(3): 150-160, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37955633

RESUMEN

The Toll-like receptor (TLR)/mammalian target of rapamycin (mTOR) signaling pathway is involved in the intracellular regulation of protein synthesis, specifically the ones that mediate neuronal morphology and facilitate synaptic plasticity. The activity of TLR/mTOR signaling has been disrupted, leading to neurodevelopment and deficient synaptic plasticity, which are the main symptoms of schizophrenia. The TLR receptor activates the mTOR signaling pathway and increases the elevation of inflammatory cytokines. Interleukin (IL)-6 is the most commonly altered cytokine, while IL-1, tumor necrosis factor, and interferon (IFN) also lead to SCZ. Anti-inflammatory and anti-oxidative agents such as celecoxib, aspirin, minocycline, and omega-3 fatty acids have shown efficiency against SCZ. As a result, inhibition of the inflammatory process could be suggested for the treatment of SCZ. So mTOR/TLR blockers represent the treatment of SCZ due to their inflammatory consequences. The objective of the present work was to find a novel anti-inflammatory agent that may block the mTOR/TLR inflammatory signaling pathways and might pave the way for the treatment of neuroinflammatory SCZ. Data were collected from experimental and clinical studies published in English between 1998 and October 2022 from Google Scholar, PubMed, Scopus, and the Cochrane library.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Transducción de Señal , Citocinas , Aspirina , Interleucina-6
4.
Adv Exp Med Biol ; 1412: 457-476, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37378783

RESUMEN

The recent viral disease COVID-19 has attracted much attention. The disease is caused by SARS-CoV-19 virus which has different variants and mutations. The mortality rate of SARS-CoV-19 is high and efforts to establish proper therapeutic solutions are still ongoing. Inflammation plays a substantial part in the pathogenesis of this disease causing mainly lung tissue destruction and eventually death. Therefore, anti-inflammatory drugs or treatments that can inhibit inflammation are important options. Various inflammatory pathways such as nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLRs), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways and mediators, such as interleukin (IL)-6, IL-1ß, tumor necrosis factor-α (TNF-α), and interferon-γ (INF-γ), cause cell apoptosis, reduce respiratory capacity and oxygen supply, eventually inducing respiratory system failure and death. Statins are well known for controlling hypercholesterolemia and may serve to treat COVID-19 due to their pleiotropic effects among which are anti-inflammatory in nature. In this chapter, the anti-inflammatory effects of statins and their possible beneficial effects in COVID-19 treatment are discussed. Data were collected from experimental and clinical studies in English (1998-October 2022) from Google Scholar, PubMed, Scopus, and the Cochrane Library.


Asunto(s)
COVID-19 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Inflamación/tratamiento farmacológico , Antiinflamatorios/uso terapéutico , Interleucina-6
5.
Inflammation ; 46(5): 1709-1724, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37233919

RESUMEN

Licofelone is a dual Cyclooxygenase 1,2 (COX1,2)/5-lipoxygenase) 5-LOX (inhibitor with analgesic and anti-inflammatory effects with possible functions on inflammatory bowel disease (IBD), which is a chronic recurrent condition with no particular treatment. This study evaluated the anti-inflammatory effects of licofelone on acetic acid-induced colitis in rats. Ten groups of male Wistar rats (n = 6) were used. Sham, control group, licofelone at doses of 2.5, 5, and 10 mg/kg, L-NG-nitro arginine methyl ester (L-NAME) (10 mg/kg, i.p.), aminoguanidine (AG) (100 mg/kg, i.p.), 30 min before using licofelone (10 mg/kg). Also, three groups received L-NAME, aminoguanidine, or dexamethasone. Macroscopic, microscopic, and biochemical analysis of myeloperoxidase (MPO), and nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), superoxide dismutase (SOD), reactive oxygen species (ROS), and Toll-like receptor 4 (TLR-4) were assessed in colon tissue. Licofelone at a dose of 10 mg/kg attenuated colitis, increased SOD activity, and significantly reduced colonic levels of the abovementioned inflammatory factors. In addition, licofelone improved macroscopic and microscopic symptoms in the acetic acid-induced colitis model. Moreover, the concurrent use of nitric oxide synthase (NOS) inhibitors with 10 mg/kg of licofelone reversed the observed positive effects, demonstrating the function of nitric oxide in IBD pathogenesis and the probable mechanism for licofelone in the healing process of induced colitis. A reduced level of inflammatory factors confirmed the anti-inflammatory activity of licofelone as a dual COX1,2/5-LOX inhibitor. Furthermore, outcomes revealed the protective role of licofelone in treating experimental colitis. The findings are suggestive of the potential use of licofelone in IBD.


Asunto(s)
Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Ratas , Masculino , Animales , Ácido Acético , Ratas Wistar , NG-Nitroarginina Metil Éster , Mediadores de Inflamación , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Superóxido Dismutasa , Colitis Ulcerosa/inducido químicamente
6.
Cytokine ; 166: 156206, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120946

RESUMEN

Inflammation and oxidative stress play pivotal roles in pathogenesis of many diseases including cancer, type 2 diabetes, cardiovascular disease, atherosclerosis, neurological diseases, and inflammatory diseases such as inflammatory bowel disease (IBD). Inflammatory mediators such as interleukins (ILs), interferons (INF-s), and tumor necrosis factor (TNF)-α are related to an extended chance of inflammatory diseases initiation or progression due to the over expression of the nuclear factor Kappa B (NF-κB), signal transducer of activators of transcription (STAT), nod-like receptor family protein 3 (NLRP), toll-like receptors (TLR), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR) pathways. These pathways are completely interconnected. Theindoleamine 2,3 dioxygenase (IDO) subset of the kynurenine (KYN) (IDO/KYN), is a metabolic inflammatory pathway involved in production of nicotinamide adenine dinucleotide (NAD + ). It has been shown that IDO/KYN actively participates in inflammatory processes and can increase the secretion of cytokines that provoke inflammatory diseases. Data were extracted from clinical and animal studies published in English between 1990-April 2022, which were collected from PubMed, Google Scholar, Scopus, and Cochrane library. IDO/KYN is completely associated with inflammatory-related pathways, thus leading to the production of cytokines such as TNF-α, IL-1ß, and IL-6, and ultimately development and progression of various inflammatory disorders. Inhibition of the IDO/KYN pathway might be a novel therapeutic option for inflammatory diseases. Herein, we gathered data on probable interactions of the IDO/KYN pathway with induction of some inflammatory diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinurenina , Animales , Quinurenina/metabolismo , Triptófano/metabolismo , Inflamación , Citocinas , Factor de Necrosis Tumoral alfa , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mamíferos/metabolismo
7.
Mini Rev Med Chem ; 23(15): 1575-1589, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36733245

RESUMEN

BACKGROUND: Viral hemorrhagic fevers (VHFs) are a group of clinical syndromes caused by several different RNA virus families, including several members of the arenavirus, bunyavirus, filovirus, and flavivirus families. VHFs have high mortality rates, and they have been associated with vascular permeability, malaise, fever, variable degrees of hemorrhage, reduced plasma volume, and coagulation abnormalities. To treat such conditions, antigen-presenting cells target dysregulated immune reactions and productive infections. Monocytes and macrophages produce inflammatory cytokines that damage adaptive immunity, while infected dendritic cells fail to mature correctly, compromising adaptive immunity. Inflammation and uncontrolled virus replication are associated with vascular leakage and coagulopathy. OBJECTIVE: VHF infects both humans and animals and if not treated, causes hemorrhagic manifestations and lethal platelet dysfunction. Besides pharmacological and immunological solutions, the intervention of natural products for VHF management is of great interest. In this review, we gathered current data about the effectiveness of natural products for VHF management. METHODS: Data were extracted from Scopus, Google Scholar, PubMed, and Cochrane library in terms of clinical and animal studies published in English between 1981 to February 2022. RESULTS: Several plants from diverse families and species were identified with antiviral activity against VHF. The combination of botanical therapeutics and multitarget synergistic therapeutic effects is now the widely accepted explanation for the treatment of VHF. Most of these herbal therapeutics have shown promising immunomodulatory effects in vivo and in vitro VHF models. They can probably modulate the immune system in VHF-infected subjects mainly by interfering with certain inflammatory mediators involved in various infectious diseases. CONCLUSION: Natural, in particular, herbal sources can be valuable for the management of various VHFs and their related complications.


Asunto(s)
Arenavirus , Virus del Dengue , Fiebres Hemorrágicas Virales , Virus ARN , Humanos , Animales , Fiebres Hemorrágicas Virales/tratamiento farmacológico , Citocinas
8.
Inflammopharmacology ; 31(1): 57-75, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36574095

RESUMEN

Inflammation plays a critical role in several diseases such as cancer, gastric, heart and nervous system diseases. Data suggest that the activation of mammalian target of rapamycin (mTOR) pathway in epithelial cells leads to inflammation. Statins, the inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA), seem to be able to inhibit the mTOR. Statins are considered to have favorable effects on inflammatory diseases by reducing the complications caused by inflammation and by regulating the inflammatory process and cytokines secretion. This critical review collected data on this topic from clinical, in vivo and in vitro studies published between 1998 and June 2022 in English from databases including PubMed, Google Scholar, Scopus, and Cochrane libraries.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Enfermedades Neurodegenerativas , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Serina-Treonina Quinasas TOR , Inflamación/tratamiento farmacológico , Sirolimus/uso terapéutico
9.
J Neuroimmunol ; 361: 577758, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739911

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder in which inflammation and oxidative stress play key etiopathological role. The pathology of PD brain is characterized by inclusions of aggregated α-synuclein (α-SYN) in the cytoplasmic region of neurons. Clinical evidence suggests that stimulation of pro-inflammatory cytokines leads to neuroinflammation in the affected brain regions. Upon neuroinflammation, the Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT) signaling pathway, and other transcription factors such as nuclear factor κB (NF-κB), NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), mammalian target of rapamycin (mTOR), and toll-like receptors (TLRs) are upregulated and induce the microglial activation, contributing to PD via dopaminergic neuron autophagy. Aberrant activation or phosphorylation of the components of JAK/STAT signaling pathway has been implicated in increased transcription of the inflammation-associated genes and many neurodegenerative disorders such as PD. Interferon gamma (IFN-γ), and interleukine (IL)-6 are two of the most potent activators of the JAK/STAT pathway, and it was shown to be elevated in PD. Stimulation of microglial cell with aggregated α-SYN results in production of nitric oxide (NO), tumor necrosis factor (TNF)-α, and IL-1ß in PD. Dysregulation of the JAK/STAT in PD and its involvement in various inflammatory pathways make it a promising PD therapy approach. So far, a variety of synthetic or natural small-molecule JAK inhibitors (Jakinibs) have been found promising in managing a spectrum of ailments, many of which are in preclinical research or clinical trials. Herein, we provided a perspective on the function of the JAK/STAT signaling pathway in PD progression and gathered data that describe the rationale evidence on the potential application of Jakinibs to improve neuroinflammation in PD.


Asunto(s)
Antiparkinsonianos/uso terapéutico , Quinasas Janus/fisiología , Enfermedad de Parkinson/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Factores de Transcripción STAT/fisiología , Transducción de Señal/fisiología , Animales , Antiparkinsonianos/farmacología , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Ensayos Clínicos como Asunto , Citocinas/fisiología , Evaluación Preclínica de Medicamentos , Hormonas/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Masculino , Ratones , Terapia Molecular Dirigida , Enfermedad de Parkinson/metabolismo , Trastornos Parkinsonianos/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Ratas , Transducción de Señal/efectos de los fármacos
10.
Pharmaceutics ; 13(8)2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34452154

RESUMEN

The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of the rapamycin (mTOR)-signaling pathway has been suggested to have connections with the malignant transformation, growth, proliferation, and metastasis of various cancers and solid tumors. Relevant connections between the PI3K/Akt/mTOR pathway, cell survival, and prostate cancer (PC) provide a great therapeutic target for PC prevention or treatment. Recent studies have focused on small-molecule mTOR inhibitors or their usage in coordination with other therapeutics for PC treatment that are currently undergoing clinical testing. In this study, the function of the PI3K/Akt/mTOR pathway, the consequence of its dysregulation, and the development of mTOR inhibitors, either as an individual substance or in combination with other agents, and their clinical implications are discussed. The rationale for targeting the PI3K/Akt/mTOR pathway, and specifically the application and potential utility of natural agents involved in PC treatment is described. In addition to the small-molecule mTOR inhibitors, there are evidence that several natural agents are able to target the PI3K/Akt/mTOR pathway in prostatic neoplasms. These natural mTOR inhibitors can interfere with the PI3K/Akt/mTOR pathway through multiple mechanisms; however, inhibition of Akt and suppression of mTOR 1 activity are two major therapeutic approaches. Combination therapy improves the efficacy of these inhibitors to either suppress the PC progression or circumvent the resistance by cancer cells.

11.
Biofactors ; 47(6): 933-951, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34388275

RESUMEN

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide. Inflammation and oxidative stress play critical roles in progression of various types of CVD. Broad pharmacological properties of ginger (the rhizome of Zingiber officinale) and its bioactive components have been reported, suggesting that they can be a therapeutic choice for clinical use. Consistent with its rich phenolic content, the anti-inflammatory and antioxidant properties of ginger have been confirmed in many studies. Ginger modifies many cellular processes and in particular was shown to have potent inhibitory effects against nuclear factor kappa B (NF-κB); signal transducer and activator of transcription; NOD-, LRR-, and pyrin domain-containing proteins; toll-like receptors; mitogen-activated protein kinase; and mammalian target of rapamycin signaling pathways. Ginger also blocks pro-inflammatory cytokines and the activation of the immune system. Ginger suppresses the activity of oxidative molecules such as reactive oxygen species, inducible nitric oxide synthase, superoxide dismutase, glutathione, heme oxygenase, and GSH-Px. In this report, we summarize the biochemical pathologies underpinning a variety of CVDs and the effects of ginger and its bioactive components, including 6-shogaol, 6-gingerol, and 10-dehydrogingerdione. The properties of ginger and its phenolic components, mechanism of action, biological functions, side effects, and methods for enhanced cell delivery are also discussed. Together with preclinical and clinical studies, the positive biological effects of ginger and its bioactive components in CVD support the undertaking of further in vivo and especially clinical studies.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Catecoles/farmacología , Alcoholes Grasos/farmacología , Guayacol/análogos & derivados , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Guayacol/farmacología , Humanos , Extractos Vegetales/farmacología
12.
Mol Biol Rep ; 48(1): 855-874, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33394234

RESUMEN

Inflammatory bowel diseases (IBD) belong to a subgroup of persistent, long-term, progressive, and relapsing inflammatory conditions. IBD may spontaneously develop in the colon, resulting in tumor lesions in inflamed regions of the intestine, such as invasive carcinoma. The benefit of opioids for IBD treatment is still questionable, thereby we investigated databases to provide an overview in this context. This review demonstrates the controversial role of opioids in IBD therapy, their physiological and pharmacological functions in attenuating the IBD symptoms, and in improving inflammatory, oxidative stress, and the quality of life factors in IBD subjects. Data were extracted from clinical, in vitro, and in vivo studies in English, between 1995 and 2019, from PubMed, Google Scholar, Scopus, and Cochrane library. Based on recent reports, there are promising opportunities to target the opioid system and control the IBD symptoms. This study suggests a novel approach for future treatment of functional and inflammatory disorders such as IBD.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Antiinflamatorios/uso terapéutico , Colitis Ulcerosa/tratamiento farmacológico , Enfermedad de Crohn/tratamiento farmacológico , Receptores Opioides/genética , Animales , Ensayos Clínicos como Asunto , Colitis Ulcerosa/genética , Colitis Ulcerosa/inmunología , Colitis Ulcerosa/patología , Enfermedad de Crohn/genética , Enfermedad de Crohn/inmunología , Enfermedad de Crohn/patología , Citocinas/genética , Citocinas/inmunología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Intestinos/efectos de los fármacos , Intestinos/inmunología , Ratones , Estrés Oxidativo/efectos de los fármacos , Calidad de Vida/psicología , Receptores Opioides/inmunología , Transducción de Señal
13.
Curr Med Chem ; 28(8): 1605-1624, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32364064

RESUMEN

Inflammatory bowel disease (IBD) is a general term for a group of chronic and progressive disorders. Several cellular and biomolecular pathways are implicated in the pathogenesis of IBD, yet the etiology is unclear. Activation of the mammalian target of rapamycin (mTOR) pathway in the intestinal epithelial cells was also shown to induce inflammation. This review focuses on the inhibition of the mTOR signaling pathway and its potential application in treating IBD. We also provide an overview of plant-derived compounds that are beneficial for the IBD management through modulation of the mTOR pathway. Data were extracted from clinical, in vitro and in vivo studies published in English between 1995 and May 2019, which were collected from PubMed, Google Scholar, Scopus and Cochrane library databases. Results of various studies implied that inhibition of the mTOR signaling pathway downregulates the inflammatory processes and cytokines involved in IBD. In this context, a number of natural products might reverse the pathological features of the disease. Furthermore, mTOR provides a novel drug target for IBD. Comprehensive clinical studies are required to confirm the efficacy of mTOR inhibitors in treating IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Inflamación , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Sirolimus , Serina-Treonina Quinasas TOR
14.
Life Sci ; 257: 118103, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32681913

RESUMEN

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal (GI) disorder with negative impacts on quality of life of patients. Although the etiology of the disease is still unclear, there are a set of mechanisms and factors involved in IBS pathogenesis. Visceral hypersensitivity, impaired gut barrier, along with minor inflammation and oxidative stress are the most important triggers for IBS induction. Activation of peroxisome proliferator activated receptor-γ (PPAR-γ) has been shown to improve gut barrier, downregulate pro-inflammatory cytokines, reduce free radical production through antioxidative mechanisms, and exert anti-nociceptive effects against somatic pain. An electronic search in PubMed, Google Scholar, Scopus, and Cochrane library was performed and relevant clinical, in vivo and in vitro articles published between 2004 and June 2020 were collected. Search terms included "Irritable Bowel Syndrome" OR "IBS" OR "visceral hypersensitivity" OR "motility dysfunction" AND "peroxisome proliferator activated receptors" OR "PPAR". Herein, the efficacy of PPARγ signaling as a potential target for IBS treatment is reviewed.


Asunto(s)
Síndrome del Colon Irritable/metabolismo , PPAR gamma/metabolismo , Animales , Humanos , Inflamación/metabolismo , Síndrome del Colon Irritable/tratamiento farmacológico , Estrés Oxidativo
15.
Daru ; 27(2): 755-780, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31273572

RESUMEN

Irritable bowel syndrome (IBS) is a well diagnosed disease, thoroughly attributed to series of symptoms criteria that embrace a broad range of abdominal complainers. Such criteria help to diagnosis the disease and can guide controlled clinical trials to seek new therapeutic agents. Accordingly, a verity of mechanisms and pathophysiological conditions including inflammation, oxidative stress, lipid peroxidation and different life styles are involved in IBS. Predictably, diverse therapeutic approaches are available and prescribed by clinicians due to major manifestations (i.e., diarrhea-predominance, constipation-predominance, abdominal pain and visceral hypersensitivity), psychological disturbances, and patient preferences between herbal treatments versus pharmacological therapies, dietary or microbiological approaches. Herein, we gathered the latest scientific data between 1973 and 2019 from databases such as PubMed, Google Scholar, Scopus and Cochrane library on relevant studies concerning beneficial effects of herbal treatments for IBS, in particular polyphenols. This is concluded that polyphenols might be applicable for preventing IBS and improving the IBS symptoms, mainly through suppressing the inflammatory signaling pathways, which nowadays are known as novel platform for the IBS management. Graphical abstract.


Asunto(s)
Antiinflamatorios/uso terapéutico , Síndrome del Colon Irritable/prevención & control , Polifenoles/uso terapéutico , Antiinflamatorios/farmacología , Ensayos Clínicos como Asunto , Humanos , Síndrome del Colon Irritable/metabolismo , Estrés Oxidativo/efectos de los fármacos , Polifenoles/farmacología , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...